Stereoselective Synthesis of (Z)-Enethiols and Their Derivatives: Vinylic $S_N 2$ Reaction of (E)-Alkenyl(phenyl)- λ^3 -iodanes with Thioamides

Masahito Ochiai,* Shinji Yamamoto, Takashi Suefuji, and Da-Wei Chen

Faculty of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan

Synthesis of (Z)-Enethiol 2: Reaction of (E)-(1-Decenyl)phenyliodonium Tetrafluoroborate (1a) with *N,N***-Dimethylthioformamide (Table 1, entry 1).** To a stirred solution of (*E*)-(1-decenyl)phenyliodonium tetrafluoroborate (1a) (36 mg, 0.084 mmol) in dichloromethane (1.7 mL) was added *N,N*-dimethylthioformamide (22 mg, 0.25 mmol) at room temperature under nitrogen, and the mixture was stirred for 20 h. Water was added, the mixture was extracted with dichloromethane, and the combined organic phase was washed with water. The organic phase was filtered and concentrated under aspirator vacuum to give a pale yellow oil. Yields of the products (*Z*)-1-decene-1-thiol (2a, 70%) and iodobenzene (44%) were determined by ¹H NMR. Attempted removal of by-product iodobenzene under high vacuum resulted in dimerization of 2a to give (*Z*)-1-decenyl 1-mercaptodecyl sulfide (3a).

(*Z*)-Enethiol 2a: colorless oil; IR (CHCl₃) 2250, 908 cm⁻¹; ¹H NMR (CDCl₃) δ 5.98 (ddt, *J* = 9.6, 8.6, 1.4 Hz, 1H), 5.66 (dt, *J* = 9.6, 7.1 Hz, 1H), 2.66 (d, *J* = 8.6 Hz, 1H), 2.10 (dq, *J* = 1.4, 7.1 Hz, 2H), 1.45-1.20 (m, 12H), 0.91 (t, *J* = 6.5 Hz, 3H); ¹³C NMR (CDCl₃) δ 131.4 (d), 114.1 (d), 31.9 (t), 29.4 (t), 29.2 (t), 28.2 (t), 28.2 (t), 22.6 (t), 14.1 (q); MS m/z (relative intensity) 172 (26, M⁺), 101 (14), 87 (28), 73 (64), 60 (100); HRMS calcd for C₁₀H₂₀S (M⁺) 172.1286, found 172.1297.

(**Z**)-Enethiol 2b: colorless oil; IR (CHCl₃) 2252, 1268, 905 cm⁻¹; ¹H NMR (CDCl₃) δ 7.33-7.14 (m, 5H), 6.03 (br t, J = 8.9 Hz, 1H), 5.69 (dt, J = 8.9, 7.0 Hz, 1H), 2.67 (d, J = 8.9 Hz, 1H), 2.64 (t, J = 7.6 Hz, 2H), 2.16 (br q, J = 7.0 Hz, 2H), 1.75 (m, 2H); ¹³C NMR (CDCl₃) δ 142.2 (s), 130.7 (d), 128.5 (d), 128.3 (d), 125.8 (d), 114.9 (d), 35.4 (t), 30.4 (t), 22.7 (t); MS m/z (relative intensity) 178 (5, M⁺), 144 (32), 129 (21), 117 (26), 105 (36), 91 (100), 73 (26), 65 (38), 45 (57); HRMS calcd for C₁₁H₁₄S (M⁺) 178.0816, found 178.0814.

Dimer 3a: colorless oil; ¹H NMR (CDCl₃) δ 6.11 (dt, J = 9.6, 1.5 Hz, 1H), 5.73 (dt, J = 9.6, 7.3 Hz, 1H), 4.04 (q, J = 6.9 Hz, 1H), 2.19-2.08 (3H), 1.98-1.76 (m, 2H), 1.41-1.20 (m, 26H), 0.89 (t, J = 6.3 Hz, 6H).

The structure of **2a**, **2b**, and **3a** was determined by spectroscopy using two-dimensional (2D) NMR techniques, i.e., ¹H, ¹H-COSY and ¹³C, ¹H-COSY.

- (Z)-S-Vinylthioimidonium Salt 6a (R' = Me, R" = H, X = S): Reaction of 1a with Thioacetamide. To a stirred solution of 1a (39 mg, 0.09 mmol) in dichloromethane (1.8 mL) was added thioacetamide (7.5 mg, 0.10 mmol) at room temperature under nitrogen, and the mixture was stirred for 24 h. The reaction mixture was concentrated under aspirator vacuum to give a pale yellow oil, which was washed several times with hexane by decantation to give (Z)-S-vinylthioimidonium salt 6a (87% 1 H NMR yield) contaminated with a small amount of impurity.
- (*Z*)-*S*-Vinylthioimidonium Salt 6a (R' = Me, R" = H, X = S): pale yellow oil: ¹H NMR (CDCl₃) δ 9.6 (br s, 2H), 6.77 (dt, J = 8.7, 7.5 Hz, 1H), 6.21 (br d, J = 8.7 Hz, 1H), 2.68 (s, 3H), 2.29 (br q, J = 7.5 Hz, 2H), 1.51-1.22 (m, 12H), 0.88 (t, J = 6.3 Hz, 3H); FAB MS m/z 214 [(M-BF₄)⁺]; HRMS (FAB) calcd for C₁₂H₂₄NS [(M-BF₄)⁺] 214.1629, found 214.1629.
- (*Z*)-*S*-Vinylthioimidonium Salt 6b (R' = Ph, R'' = H, X = S): pale yellow oil: 1 H NMR (CDCl₃) δ 7.97 (br d, J = 7.4 Hz, 2H), 7.78 (br t, J = 7.3 Hz, 1H), 7.61 (br t, J = 7.4 Hz, 2H), 6.89 (dt, J = 8.7, 7.5 Hz, 1H), 6.42 (dt, J = 8.7, 1.2 Hz, 1H), 2.37 (br q, J = 7.5 Hz, 2H), 1.57-1.20 (m, 12H), 0.88 (t, J = 6.5 Hz, 3H); FAB MS m/z 276 [(M-BF₄)⁺]; HRMS (FAB) calcd for C₁₇H₂₆NS [(M-BF₄)⁺] 276.1786, found 276.1794.
- Synthesis of (Z)-S-Vinylisothiouronium Salt 10: Reaction of (E)-(1-Decenyl)phenyliodonium Tetrafluoroborate (1a) with Thiourea (9a) (Table 2, entry 1). A suspension of (E)-(1-decenyl)phenyliodonium tetrafluoroborate (1a) (76 mg, 0.18 mmol) and thiourea (1a) (15 mg, 0.20 mmol) in dichloromethane (3.6 mL) was stirred for 17 h at room temperature under nitrogen. Water was added, the mixture was extracted with dichloromethane, and the combined organic phase was washed with water. The organic phase was filtered and concentrated under aspirator vacuum to give a yellow oil, which was washed several times with hexane by decantation at -78 °C to give (Z)-S-vinylisothiouronium salt 10a (41.5 mg, 77%).
- (*Z*)-*S*-Vinylisothiouronium Salt 10a: colorless oil; IR (neat) 3430-3000, 1652, 1445, 1070 cm⁻¹; ¹H NMR (CDCl₃) δ 7.28 (br s, NH), 6.68 (dt, J = 8.6, 7.5 Hz, 1H), 6.13 (dt, J = 8.6, 1.0 Hz, 1H), 2.33 (br q, J = 7.5 Hz, 2H), 1.44 (m, 2H), 1.35-1.24 (m, 10H), 0.88 (t, J = 6.6 Hz, 3H); FAB MS m/z 215 [(M-BF₄)⁺]; HRMS (FAB) calcd for C₁₁H₂₃N₂S [(M-BF₄)⁺] 215.1582, found 215.1574.
- (*Z*)-*S*-Vinylisothiouronium Salt 10b: colorless oil; IR (neat) 3360, 1655, 1611, 1070 cm⁻¹; ¹H NMR (CDCl₃) δ 6.72 (dt, J = 8.7, 7.6 Hz, 1H), 6.11 (dt, J = 8.7, 1.1 Hz, 1H), 3.09 (s, 3H), 2.33 (br q, J = 7.6 Hz, 2H), 1.53-1.20 (m, 12H) 0.90 (t, J = 6.5 Hz, 3H); FAB MS m/z 229 [(M-BF₄)⁺], HRMS (FAB) calcd for C₁₂H₂₅N₂S [(M-BF₄)⁺] 229.1738, found 229.1729.
- (*Z*)-*S*-Vinylisothiouronium Salt 10c: pale yellow oil; IR (neat) 3330, 1635, 1529, 1070 cm⁻¹; ¹H NMR (CDCl₃) δ 7.30 (br s, NH), 6.77 (dt, J = 8.8, 7.4 Hz, 1H), 6.09 (dt, J = 8.8, 1.1 Hz, 1H), 3.15 (br s, 3H), 3.09 (br s, 3H), 2.33 (br q, J = 7.4 Hz, 2H), 1.52-1.23 (m, 12H), 0.88 (t, J = 6.3 Hz, 3H); FAB MS m/z 243 [(M-BF₄)⁺]; HRMS (FAB) calcd for C₁₃H₂₇N₂S [(M-BF₄)⁺] 243.1895, found 243.1886.

- (*Z*)-*S*-Vinylisothiouronium Salt 10d: colorless oil; IR (neat) 1608, 1508, 1467, 1403, 1062 cm⁻¹; ¹H NMR (CDCl₃) δ 6.18 (dt, J = 8.9, 8.4 Hz, 1H), 6.07 (dt, J = 8.9, 1.0 Hz, 1H), 3.34 (s, 12H), 2.21 (br q, J = 8.4 Hz, 2H), 1.50-1.23 (m, 12H), 0.88 (t, J = 6.5 Hz, 3H); FAB MS m/z 271 [(M-BF₄)⁺], HRMS (FAB) calcd for C₁₅H₃₁N₂S [(M-BF₄)⁺] 271.2208, found 271.2196.
- (*Z*)-*S*-Vinylisothiouronium Salt 10e: yellow oil; IR (neat) 3326, 1645, 1070 cm⁻¹; ¹H NMR (CDCl₃) δ 7.50-7.28 (m, 5H), 6.68 (dt, J = 8.8, 8.0 Hz, 1H), 6.24 (br s, NH), 6.14 (dt, J = 8.8, 1.1 Hz, 1H), 2.29 (br q, J = 8.0 Hz, 2H), 1.49-1.21 (m, 12H), 0.88 (t, J = 6.2 Hz, 3H); FAB MS m/z 291 [(M-BF₄)⁺]; HRMS (FAB) calcd for C₁₇H₂₇N₂S [(M-BF₄)⁺] 291.1895, found 291.1883.
- (*Z*)-*S*-Vinylisothiouronium Salt 10f: colorless plates; mp 29-31 °C (recrystallized from CH_2Cl_2 - Et_2O -hexane); IR (KBr) 3375, 1563, 1058 cm⁻¹; ¹H NMR (CDCl₃) δ 8.03 (br s, NH), 6.55 (dt, J = 8.6, 7.4 Hz, 1H), 6.18 (dt, J = 8.6, 1.0 Hz, 1H), 4.03 (s, 4H), 2.29 (br q, J = 7.4 Hz, 2H), 1.50-1.20 (m, 12H), 0.89 (t, J = 6.5 Hz, 3H); FAB MS m/z 241 [(M-BF₄)⁺]; HRMS (FAB) calcd for $C_{13}H_{25}N_2S$ [(M-BF₄)⁺] 241.1738, found 241.1734.
- (*Z*)-*S*-Vinylisothiourea 11c: colorless oil; IR (neat) 3250, 1630 cm⁻¹; ¹ H NMR (CDCl₃) δ 6.17 (dt, J = 9.7, 1.1 Hz, 1H), 6.07 (dt, J = 9.7, 6.9 Hz, 1H), 4.16 (br s, 1H, NH), 2.98 (br s, 6H), 2.25 (br q, J = 6.9 Hz, 2H), 1.45-1.23 (m, 12H), 0.89 (t, J = 6.7 Hz, 3H); MS m/z (relative intensity) 242 (60, M⁺), 212 (20), 172 (25), 129 (63), 95 (40), 81 (57), 70 (95), 56 (100); HRMS calcd for C₁₃H₂₆N₂S (M⁺) 242.1817, found 242.1807.
- (*Z*)-*S*-Vinylisothiourea 11g: pale yellow powder; mp 80.5-83.5 °C (recrystallized from CH₂Cl₂-hexane); IR (KBr) 3430, 1729, 1474, 1250 cm⁻¹; ¹H NMR (CDCl₃) δ 9.25 (br s, 1H, NH), 6.53 (br d, J = 9.1 Hz, 1H), 6.05 (dt, J = 9.1, 7.5 Hz, 1H), 4.20 (s, 2H), 2.20 (br q, J = 7.5 Hz, 2H), 1.49-1.23 (m, 12H), 0.89 (t, J = 6.7 Hz, 3H); MS m/z (relative intensity) 254 (15, M⁺), 221 (19), 197 (13), 169 (45), 155 (25), 141 (100), 117 (18), 85 (18), 68 (18), 55 (46). Anal. Calcd for C₁₃H₂₂N₂OS: C, 61.38; H, 8.72; N, 11.01. Found: C, 60.91; H, 8.54; N, 10.93.
- Synthesis of (*Z*)-Vinyl Sulfides 15: Reaction of (*E*)-(1-Decenyl)phenyliodonium Tetrafluoroborate (1a) with 2-Mercaptobenzimidazole (13a) (Table 3, entry 1). A solution of (*E*)-(1-decenyl)phenyliodonium tetrafluoroborate (1a) (44 mg, 0.10 mmol) and 2-mercaptobenzimidazole (13a) (19 mg, 0.12 mmol) in dichloromethane (2.1 mL) was stirred for 9 h at room temperature under nitrogen. Water was added, the mixture was extracted with dichloromethane, and the combined organic phase was washed with water. The organic phase was filtered and concentrated under aspirator vacuum to give a pale yellow solid, which was purified by preparative TLC to give (*Z*)-vinyl sulfide 15a (24 mg, 80%).
- (*Z*)-Vinyl Sulfide 15a: colorless needles; mp 114-115.5 °C (recrystallized from CH_2Cl_2 -hexane); IR (KBr) 1634, 1441, 1407, 750 cm⁻¹; ¹H NMR (CDCl₃) δ 7.58-7.50 (m, 2H), 7.24-7.16 (m, 2H), 6.64 (dt, J = 9.1, 1.0 Hz, 1H), 5.95 (dt, J = 9.1, 7.4 Hz, 1H), 2.21 (br q, J = 7.4 Hz, 2H), 1.47-1.20 (m, 12H), 0.89 (t, J = 6.6 Hz, 3H); MS m/z (relative intensity) 288 (34, M⁺), 255 (75), 175 (100). Anal. Calcd for $C_{17}H_{24}N_2S$: C, 70.79; H, 8.39; N, 9.71. Found: C, 70.38; H, 8.28; N,

9.55.

- (*Z*)-Vinyl Sulfide 15b: colorless oil; IR (neat) 1605, 1505, 1454, 1133 cm⁻¹; ¹H NMR (CDCl₃) δ 7.66-7.59 (m, 1H), 7.48-7.42 (m, 1H), 7.32-7.23 (m, 2H), 6.70 (dt, J = 9.1, 1.2 Hz, 1H), 6.06 (dt, J = 9.1, 7.4 Hz, 1H), 2.26 (br q, J = 7.4 Hz, 2H), 1.55-1.20 (m, 12H), 0.89 (t, J = 6.7 Hz, 3H); MS m/z 289 (M⁺), 256, 232, 204, 176, 151, 133, 120, 55; HRMS calcd for C₁₇H₂₃NOS (M⁺) 289.1500, found 289.1499.
- (*Z*)-Vinyl Sulfide 15c: colorless oil; IR (neat) 1610, 1427, 997, 755 cm⁻¹; ¹H NMR (CDCl₃) δ 7.90 (br d, J = 8.4 Hz, 1H), 7.77 (br d, J = 8.3 Hz, 1H), 7.48-7.24 (m, 2H), 6.67 (dt, J = 8.9, 1.2 Hz, 1H), 6.10 (dt, J = 8.9, 7.5 Hz, 1H), 2.29 (br q, J = 7.5 Hz, 2H), 1.53-1.15 (m, 12H), 0.87 (t, J = 6.6 Hz, 3H); MS m/z 305 (M⁺), 272, 248, 192, 167, 149; HRMS calcd for C₁₇H₂₃NS₂ (M⁺) 305.1272, found 305.1279.
- (*Z*)-Vinyl Sulfide 15d: colorless oil; IR (neat) 1605, 1457, 1427, 997, 756 cm⁻¹; ¹H NMR (CDCl₃) δ 7.90 (br d, J = 8.0 Hz, 1H), 7.77 (br d, J = 8.0 Hz, 1H), 7.43 (dt, J = 1.2, 8.0 Hz, 1H), 7.35-7.13 (m, 6H), 6.72 (dt, J = 9.0, 1.2 Hz, 1H), 6.11 (dt, J = 9.0, 7.3 Hz, 1H), 2.77 (t, J = 7.4 Hz, 2H), 2.34 (br q, J = 7.3 Hz, 2H), 1.80 (m, 2H); MS m/z (relative intensity) 311 (60, M⁺), 278 (19), 220 (38), 192 (100), 91; HRMS calcd for $C_{18}H_{17}NS_2$ (M⁺) 311.0802, found 311.0801.